Ref No:		

Sri Krishna Institute of Technology Bengaluru

LABORATORY PLAN

Academic Year 2019-2020

Program:	B E
Semester :	2
Course Code:	18PHYL16
Course Title:	Engineering Physics Lab
Credit / L-T-P:	2 / 0-0-2
Total Contact Hours:	42
Course Plan Author:	Arun Kumar A M

Academic Evaluation and Monitoring Cell

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	
3. Laboratory Material	
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	
B. Laboratory Instructions	6
1. General Instructions.	6
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	
4. Articulation Matrix	9
5. Curricular Gap and Experiments	10
6. Experiments Beyond Syllabus	10
D. COURSE ASSESSMENT	10
1. Laboratory Coverage	10
2. Continuous Internal Assessment (CIA)	11
E. EXPERIMENTS	11
Experiment 01: Newtons Ring	11
Experiment 02: Dielectric constant	13
Experiment 03: Laser Diffraction	16
Experiment 04: Series and Parallel LCR resonance	17
Experiment 05: Fermi Energy	21
Experiment 06: Rigidity Modulus by Torsional Pendulum	23
Experiment 07: Transistor characteristics	25
Experiment 08: Photo diode characteristics	28
Experiment 09: Young's modulus by Single Cantilever method	30
Experiment 10: Series and Parallel Combinations of Spring	
Experiment 11: Magnetic Field	35
Experiment 12 : Numerical Aperture	
F. Content to Experiment Outcomes	
1. TLPA Parameters	39

Note: Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	All
Year / Semester :	1/1	Academic Year:	2019-20
Course Title:	Engineering Physics Lab	Course Code:	18PHYL16
Credit / L-T-P:	01 / 2-0-0	SEE Duration:	120 Minutes
Total Contact Hours:	62 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	Assignment / Experiment
Lab. Plan Author:	Arun Kumar A M	Sign	Dt:
Checked By:	Ravi S	Sign	Dt:

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Bloom
		Hours		s Level
1	Radius of curvature of plano convex lens using Newton's	2	Radius of	L3
	rings.		Curvature	
2	Calculation of Dielectric constant by RC charging and	2	Dielectric	L3
	Discharging		Constant	
3	Determine Wavelength of semiconductor laser using Laser	2	Wavelength	L3
	diffraction by calculating grating constant.			
4	Study Series and parallel LCR resonance and hence	2	Band Width	L3
	Calculate inductance, band width and quality factor using		and Quality	
	series LCR Resonance		Factor	
5	Estimation of Fermi Energy of Copper	2	Fermi Energy	L3
6	Study of Rigidity modulus by Torsional pendulum.	2	Rigidity	L3
			Modulus	
7	Study of input and output Transistor characteristics and	2	Transistor	L3
	hence calculate input resistance, Output Resistance, alpha		Characteristics	
	and beta			
8	Study of photo diode characteristics.	2	Photo diode	L3
			Characteristics	
9	Young's modulus of a beam by Single Cantilever experiment.	2	Young's	L3
			Modulus	
10	Determination of spring constants in Series and Parallel	2	Spring	L3
	combination		Constant	
11	Determination of Magnetic field intensity at the center of a	2	Magnetic Field	L3
	circular coil carrying current .			
12	Determine Acceptance angle and Numerical aperture of an	2	Acceptance	L3
	optical fiber		angle and	
			Numerical	
			Aperture.	

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Text books		In Lib / In Dept
	V K Mehta – Text Book on Electronics		
			-
2	Reference books		

	S P Basavaraju – Text Book on Engineering Physics		In Lib / In Dept
			-
3	Others (Web, Video, Simulation, Notes etc.)		
D	Software Tools for Design	-	-
E	Recent Developments for Research		_
_	Recent Developments for Research		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	NPTEL:		
	https://www.youtube.com/watch?		
	v=h0Y9jDKqScQ&list=PLgMDNELGJ1CaNcuuQv9xN07ZWkXE-		
	<u>wCGP</u>		
2	NPTEL: Theory of Elasticity		
	https://youtu.be/elCv1p8Wjgl		
3	Motion: https://youtu.be/5nhVNKg-6K4		
	HC Verma		
4	Optical Fiber:		
	https://youtu.be/jnjjWl1s9_s		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

	stadents mast have learne the following coarses / lopies with aesembed content						
Е	xpt	Lab. Code	Lab. Name	Topic / Description	Sem	Remarks	Blooms
							Level
	1	18PHYL1	Engineering	The student should have	Lower		Knowledg
		6	Physics Lab	acquired the knowledge of Basic	Standards		e L1
				laws, theories, phenomenon,			
				definitions, expressions,			
				advanced research in formations			
				and techniques required in			
				modern Physics and material			
				science			
- 1		I	1				

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt	Topic / Description	Area	Remarks	Blooms Level
1				

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the lab as per the time table.	
3	After completion of the Experiments, certification of the concerned	

	staff in-charge in the observation book is necessary.	
4	Should enter the readings / observations into the observation book	
	while performing the experiment.	
5	The record of observations along with the detailed experimental	
	procedure of the experiment in the Immediate last session should be	
	submitted and certified staff member in - charge.	
6	When the experiment is completed, should disconnect the setup	
	made by them, and should return all the components/instruments	
	taken for the purpose.	
7	Any damage of the equipment or burn-out components will be	
	viewed seriously by putting penalty	
8	Completed lab assignments should be submitted in the form of a Lab	
	Record in which you have to write the Aim, apparatus, procedure,	
	circuit diagram, Observations, calculations and results.	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Should be dressed in Lab Uniform	
2	Enter in Lab Login Register	
3	Setup the Experiments	
4	Make the circuit connection	
5	Calculations and getting it mandatory	
6	Scientific calculator and graphs are compulsory	
7	Write the Record	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt	Lab Code	COs / Experiment Outcome	Teach	Concept	Instr	Assessm	Blooms
	#				Method	ent	' Level
			Hours			Method	
-	-	At the end of the experiment, the student	-	-	-	-	-
		should be able to					
1		Students should be able to- Apply the knowledge of oscillations, frequency and resonance concept and their practical applications	4	Oscillations	Experime nt	Slip Test	L3
2		Use and identify the Elastic moduli and Moment of inertia of given materials	4	Elasticity	Experime nt	Slip Test	L3
3		Understand and apply the concept of Interference of light, Diffraction of light, Fermi energy and magnetic effect of current.		•	Experime nt	Slip Test	L3
4		Understand and use the principles of operations of optical fibers and semiconductor devices using a simple circuits.	8	Material	Experime nt	Slip Test	L3
_		Total	24	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Used in Clocks, Fax Machine and Radio Stations.	CO1	L3
2	Resonators are used in particle accelerator, photonic devices, cars.	CO1	L3

3	The elastic moduli measures the stiffness of the building materials.	CO2	L3	
1	The knowledge of torque is important in the operation of electric motors, gyroscopes, etc.			
5	Lasers find vast applications in Industry, medical, scientific fields.	CO3	L3	
	Fermi energy is applied in determining the electrical and thermal characteristics of solids.	CO3	L3	
7	Used in Remote Control, CD players, Television, switching circuits etc.	CO4	L3	
	Optical fibers are used in telecommunication companies to transmit telephone signals.	CO4	L3	

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

	_	•	to accon		11
Exp t.	мар	ping	Mapping Level	Justification for each CO-PO pair	Level
-	СО	РО	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1		PO1		Engineering Knowledge: Acquisition of Engineering knowledge is required to understand the concept of oscillations and resonance to apply it in use of clocks, scientific instruments.	
1		PO2	L3	Problem Analysis: To solve the problems in mechanical and electrical engineering field requires the knowledge of frequency and resonance to use it in different types of oscillatory system.	
1	CO1	PO3	L3	Design and Development of solution: The knowledge of resonance and elasticity is required in designing and developing the LCR circuit and spring constant respectively.	
1		PO4	L3	Modern tool Usage: Various modern tool usage is required for analysis and interpretation of resonance, SHM and spring constant.	I
1	CO1	PO5	L3	No Mapping – No tool content.	
1	CO1	PO6	L3	The engineer and society: The knowledge of applications of oscillations and resonance is required to the engineer and society in day to day life.	
1	CO1	PO7	L3	No Mapping - This does not have any impact on society.	
1	CO1	PO8	L3	No Mapping - the content is not related to professional ethics.	
1		PO9	L3	Individual and Team work: To understand the functions and properties of passive electrical devices requires the Individual and team work to perform the experiments.	
1	CO1	PO10	L3	No Mapping - There is no design and document, hence no mapping.	
1	CO1	PO11	L3	No Mapping - There is no project management. Hence no mapping.	
1	CO1	PO12	L3	Life long learning: The understanding of the applications of LCR and spring constant is essential in day to day learning.	L3
2	CO2	PO1	L3	Engineering Knowledge: The acquisition of engineering knowledge of Elasticity required in the study civil and mechanical engineering field.	
2	CO2	PO2	L3	Problem Analysis: Problem analyzing of different material requires the knowledge of elasticity.	L3
2		PO3	L3	Design and Development of solution: Designing and developing the solution for the study of Rigidity modulus and Young's modulus requires the knowledge of elasticity.	
2		PO4	L3	Modern tool usage: Modern tools require the knowledge of elasticity to analyze and interpret the Rigidity modulus and Young's modulus study.	
2		PO5	L3	No Mapping - No tool content.	
2	CO2	PO6	L3	The engineer and society: The engineer and society require the	L3

LABORATORY PLAN - CAY 2019-20

2 CO2 PO7 L3 No Mapping - This does not have any impact on society. No Mapping - This content is not related to professional ethics. CO2 PO8 L3 No Mapping - The content is not related to professional ethics. Individual and team work: Individual and team work is required to study the functions of Rigidity and Young's modulus used in projects. CO2 PO10 L3 No Mapping - There is no design and document, hence no mapping. CO2 PO11 L3 No Mapping - There is no project management involved here. Hence no mapping. CO2 PO12 L3 Life long learning: The life long learning of elasticity is required to the recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. CO3 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering flied. CO3 PO2 L3 Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. CO3 PO3 L3 Position and Development of solution: The design and development of diffraction, interference and electromagnetic field. CO3 PO3 L3 No Mapping - No tool content. CO3 PO3 L3 No Mapping - The content is not related to professional ethics. CO3 PO3 L3 No Mapping - The content is not related to professional ethics. CO3 PO3 L3 No Mapping - The content is not related to professional ethics. CO3 PO3 L3 No Mapping - The content is not related to professional ethics. CO4 PO3 L3 No Mapping - The content is not related to professional ethics. CO4 PO3 L3 No Mapping - The content is not related to professional ethics. CO4 PO3 L3 No Mapping - There is no design and document, hence no mapping. CO4 PO3 L3 No Mapping - There is no project management. Henc					knowledge of elasticity to know the applications of rigidity modulus	
2 CO2 PO7 L 3 No Mapping - This does not have any impact on society. 2 CO2 PO9 L 3 Individual and team work: Individual and team work is required to study the functions of Rigidity and Young's modulus used in projects. 2 CO2 PO10 L 3 No Mapping - There is no design and document, hence no mapping. 2 CO2 PO11 L 3 No Mapping - There is no design and document, hence no mapping. 2 CO2 PO12 L 3 Ife long learning: The life long learning of elasticity is required to recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. 3 CO3 PO1 L 3 Engineering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. 3 CO3 PO2 L 3 Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. 3 CO3 PO4 L 3 Modem tool usage: Modern tool uses the concept of physical optics and electromagnetic freed and newtons ring. 4 CO3 PO5 L 3 No Mapping - No tool content. 5 CO3 PO6 L 3 The engineer and society: The society requires to study the applications of diffraction, grant and electromagnetic field and newtons ring in day to day life. 4 CO4 PO1 L 3 No Mapping - The content is not related to professional ethics. 5 CO3 PO9 L 3 No Mapping - The ordiner is not related to professional ethics. 6 CO3 PO9 L 3 No Mapping - The ordiner is not related to professional ethics. 7 CO3 PO9 L 3 No Mapping - The ordiner is not related to professional ethics. 8 CO3 PO9 L 3 No Mapping - The ordiner is not related to professional ethics. 9 CO3 PO9 L 3 No Mapping - The ordiner is not related to professional ethics. 9 CO4 PO9 L 3 No Mapping - There is no design and document, hence no mapping. 9 CO4 PO9 L 3 No Mapping - There is no project management. Hence no mapping. L is required to understand band theory of solids which is re						
2 CO2 PO8 L3 No Mapping - The content is not related to professional ethics. 2 CO2 PO9 L3 Individual and team work: Individual and team work is required to study the functions of Rigidity and Young's modulus used in projects. 2 CO2 PO10 L3 No Mapping - There is no design and document, hence no mapping. 2 CO2 PO11 L3 No Mapping - There is no project management involved here. Hence no mapping. 2 CO2 PO12 L3 Life long learning: The life long learning of elasticity is required to recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. 3 CO3 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. 3 CO3 PO2 L3 Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. 3 CO3 PO3 L3 Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. 3 CO3 PO4 L3 Modern tool usage: Modern tool uses the concept of physical optics and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field and newtons ring in day to day life. 3 CO3 PO5 L3 No Mapping - No tool content. 3 CO3 PO6 L3 The engineer and society: The society requires to study the applications of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO9 L3 No Mapping - There is no design and document, hence no mapping. 4 CO4 PO1 L3 No Mapping - There is no project management. Hence no mapping. 5 CO3 PO11 L3 No Mapping - There is no project management. Hence no mapping. 6 CO4 PO1 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids which is required in understandin	2	CO2	PO7	13		
2 CO2 PO9 L3 Individual and team work: Individual and team work is required to study the functions of Rigidity and Young's modulus used in projects. No Mapping - There is no design and document, hence no mapping. CO2 PO11 L3 No Mapping - There is no project management involved here. Hence no mapping. Life long learning: The life long learning of elasticity is required to recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. CO3 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge L3 is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. CO3 PO2 L3 Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. CO3 PO3 L3 Posign and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. CO3 PO4 L3 Modern tool usage: Modern tool uses the concept of physical optics and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field. CO4 PO5 L3 No Mapping - No tool content. CO5 PO6 L3 The engineer and society: The society requires to study the applications of diffraction grating, magnetic field and newtons ring in day to day life. CO4 PO6 L3 No Mapping - Theore is no trelated to professional ethics. No Mapping - There is no design and document, hence no mapping. CO5 PO6 L3 No Mapping - There is no design and document, hence no mapping. CO6 PO7 L3 No Mapping - There is no project management. Hence no mapping. CO7 PO7 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids which is required in understanding of different electronic components. CO6 PO7 L3 Problem analysis: The problem analysi						
study the functions of Rigidity and Young's modulus used in projects. 2 CO2 PO10 L3 No Mapping - There is no design and document, hence no mapping. 2 CO2 PO11 L3 No Mapping - There is no project management involved here. Hence no mapping. 2 CO2 PO12 L3 Life long learning: The life long learning of elasticity is required to recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. 3 CO3 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering field. 3 CO3 PO2 L3 Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. 3 CO3 PO3 L3 Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. 3 CO3 PO4 L3 Modern tool usage: Modern tool uses the concept of physical optics L3 and electromagnetic field. 3 CO3 PO5 L3 No Mapping - No tool content. 3 CO3 PO6 L3 The engineer and society: The society requires to study the applications of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO7 L3 No Mapping - This does not have any impact on society. No Mapping - There is no design and document, hence no mapping. 3 CO3 PO10 L3 No Mapping - There is no design and document, hence no mapping. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different band theory of solids which is required in understanding of different band theory of solids which is required in understanding of different band theory of solids which is required to study the process of optical fiber, photo diode and transistor. 4 CO4 PO3 L3 Design and Dev	_					13
mapping. 2 CO2 PO11 L3 No Mapping - There is no project management involved here. Hence no mapping. 2 CO2 PO12 L3 Life long learning: The life long learning of elasticity is required to recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. 3 CO3 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. 3 CO3 PO2 L3 Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. 3 CO3 PO3 L3 Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. 3 CO3 PO4 L3 Modern tool usage: Modern tool uses the concept of physical optics and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field and newtons ring in day to day life. 3 CO3 PO5 L3 No Mapping - No tool content. 3 CO3 PO6 L3 The engineer and society: The society requires to study the applications of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO7 L3 No Mapping - This does not have any impact on society. 3 CO3 PO8 L3 No Mapping - The content is not related to professional ethics. 3 CO3 PO1 L3 No Mapping - There is no design and document, hence no mapping. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required to identify the application in day to day life. 4 CO4 PO4 L3 Engineering knowledge: The problem analysis is required		COZ	F09	LJ	study the functions of Rigidity and Young's modulus used in projects.	
Hence no mapping. Life long learning: The life long learning of elasticity is required to recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. Engineering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. CO3 PO2 L3 Problem Analysis: Problem analysis of the material structure using a free electron theory and problems in communication system requires the knowledge of electric and magnetic field. Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. Modern tool usage: Modern tool uses the concept of physical optics and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field. No Mapping – No tool content. No Mapping – No tool content. No Mapping – The content is not related to professional ethics. No Mapping – The content is not related to professional ethics. No Mapping – The content is not related to professional ethics. CO3 PO1 L3 No Mapping – There is no design and document, hence no mapping. CO3 PO1 L3 No Mapping – There is no begin and document, hence no mapping. CO3 PO1 L3 No Mapping – There is no project management. Hence no mapping. CO4 PO1 L3 No Mapping – There is no project management. Hence no mapping. Life long Learning: The life long learning of laser is required to identify the application in day to day life. CO4 PO1 L3 No Mapping – There is no project management. Hence no mapping. L3 CO3 PO10 L3 L3 Life long Learning: The life long learning of laser is required to identify the application of only to day life. CO4 PO3 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids which is required in understanding of different elec	2			L3		
recognize and identify the application of rigidity modulus and Young's modulus in day to day learning. Brighneering knowledge: The acquisition of engineering knowledge is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. Problem Analysis: Problem analysis of the material structure using free electron theory and problems in communication system requires the knowledge of electric and magnetic field. Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, interference and electromagnetic field. No Mapping - No tool content. The engineer and society: The society requires to study the applications of diffraction grating, magnetic field and newtons ring in day to day life. No Mapping - This does not have any impact on society. No Mapping - The content is not related to professional ethics. Individual and team work is required to study the experiments of diffraction grating, magnetic field and newtons ring in day to day life. No Mapping - There is no design and document, hence no mapping. Coay Pol La No Mapping - There is no design and document, hence no mapping. Coay Pol La No Mapping - There is no project management. Hence no mapping. La Coay Pol La Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required to identify the application in day to day life. Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. Problem analysis: The problem analysis and interpretation of solution: The design and development of solution: The design and development of solution: The design and development of solution is required					Hence no mapping.	
Sis required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed. 3 CO3 PO2					recognize and identify the application of rigidity modulus and Young's modulus in day to day learning.	
free electron theory and problems in communication system requires the knowledge of electric and magnetic field. Design and Development of solution: The design and development of experiment setup is required to study the process of diffraction, magnetic field and newtons ring. Modern tool usage: Modern tool uses the concept of physical optics and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field. No Mapping - No tool content. No Mapping - No tool content. No Mapping - No tool content. No Mapping - This does not have any impact on society. No Mapping - This does not have any impact on society. Individual and team work is required to study the experiments of diffraction grating, magnetic field and newtons ring in day to day life. No Mapping - There is no design and document, hence no mapping. No Mapping - There is no design and document, hence no mapping. CO3 PO1 L3 No Mapping - There is no design and document, hence no mapping. No Mapping - There is no project management. Hence no mapping. L3 CO3 PO1 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. CO4 PO2 L3 Problem analysis: The problem analysis and interpretation of working of optical fiber, photo diode and transistor. No Mapping - No tool content. CO4 PO5 L3 No Mapping - No tool content. CO4 PO6 L3 No Mapping - No tool content.					is required to understand interaction of radiation with matter in medical and communication field and analysis of Maxwell's equation in electrical and communication engineering filed.	
of experiment setup is required to study the process of diffraction, magnetic field and newtons ring; and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field. 3 CO3 PO5 L3 No Mapping - No tool content. 3 CO3 PO6 L3 No Mapping - No tool content. 3 CO3 PO6 L3 No Mapping - The content is not related to professional ethics. 3 CO3 PO7 L3 No Mapping - The content is not related to professional ethics. 3 CO3 PO8 L3 No Mapping - The content is not related to professional ethics. 4 CO4 PO1 L3 No Mapping - There is no design and document, hence no mapping. 4 CO4 PO2 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required to identify the application of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 No Mapping - No tool content. 4 CO4 PO6 L3 No Mapping - No tool content. 4 CO4 PO6 L3 No Mapping - No tool content. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society need to know the applications of optical fiber, photo diode and transistor in day to day life. 5 CO4 PO6 L3 No Mapping - The required to professional ethics.	3			L3	free electron theory and problems in communication system	
and electromagnetic theory to analyze and interpret the study of diffraction, interference and electromagnetic field. 3 CO3 PO5 L3 No Mapping – No tool content. 3 CO3 PO6 L3 The engineer and society: The society requires to study the applications of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO7 L3 No Mapping – This does not have any impact on society. 3 CO3 PO8 L3 No Mapping – The content is not related to professional ethics. 1 Individual and team work is required to study the experiments of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO10 L3 No Mapping – There is no design and document, hence no mapping. 3 CO3 PO11 L3 No Mapping – There is no project management. Hence no mapping. L3 3 CO3 PO12 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO5 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO6 L3 No Mapping – No tool content. 4 CO4 PO6 L3 No Mapping – This does not have any impact on society. 4 CO4 PO7 L3 No Mapping – This does not have any impact on society. 8 CO4 PO7 L3 No Mapping – This does not have any impact on society.	3	CO3	PO3	L3	of experiment setup is required to study the process of diffraction,	L3
3 CO3 PO7 L3 No Mapping - There is no design and document, hence no mapping. 3 CO3 PO1 L3 No Mapping - There is no design and document, hence no mapping. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understanding of different electronic components. 4 CO4 PO2 L3 Posplan L3 Posplan Development of solution: The design and development of solution is required to study the experiments of interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 Modern tool usage: Modern tools require the analysis and the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO5 L3 Modern tool usage: Modern tools require the analysis and the applications of optical fiber, photo diode and transistor. 5 CO4 PO7 L3 No Mapping - There is no project management. Hence no mapping. L3 is required to understand band theory of solids which is required to identify the application in day to day life. 6 CO4 PO2 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 6 CO4 PO3 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 7 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 8 CO4 PO5 L3 No Mapping - No tool content. 9 CO4 PO6 L3 No Mapping - This does not have any impact on society. 9 CO4 PO7 L3 No Mapping - This does not have any impact on society. 9 CO4 PO8 L3 No Mapping - This does not have any impact on society.	3	CO3	PO4	L3	and electromagnetic theory to analyze and interpret the study of	
applications of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO7 L3 No Mapping - This does not have any impact on society. 3 CO3 PO8 L3 No Mapping - The content is not related to professional ethics. 3 CO3 PO9 L3 Individual and team work is required to study the experiments of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO10 L3 No Mapping - There is no design and document, hence no mapping. 3 CO3 PO11 L3 No Mapping - There is no project management. Hence no mapping. L3 CO3 PO12 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO5 L3 Modern tool usage: Modern tools require the analysis and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - This does not have any impact on society.		CO3	PO5		No Mapping – No tool content.	
3 CO3 PO8 L3 No Mapping – The content is not related to professional ethics. 3 CO3 PO9 L3 Individual and team work is required to study the experiments of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO10 L3 No Mapping – There is no design and document, hence no mapping. 3 CO3 PO11 L3 No Mapping – There is no project management. Hence no mapping. L3 CO3 PO12 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping – No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know to day life. 4 CO4 PO7 L3 No Mapping – This does not have any impact on society. 4 CO4 PO8 L3 No Mapping – This does not have any impact on society.	3			_	applications of diffraction grating, magnetic field and newtons ring in day to day life.	
3 CO3 PO9 L3 Individual and team work is required to study the experiments of diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO10 L3 No Mapping – There is no design and document, hence no mapping. 3 CO3 PO11 L3 No Mapping – There is no project management. Hence no mapping. L3 3 CO3 PO12 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping – No tool content. 4 CO4 PO6 L3 No Mapping – No tool content. 4 CO4 PO7 L3 No Mapping – There is no design and document, hence no mapping. L3 Individual and transistor in day to day life.				L3		
diffraction grating, magnetic field and newtons ring in day to day life. 3 CO3 PO10 L3 No Mapping - There is no design and document, hence no mapping. 3 CO3 PO11 L3 No Mapping - There is no project management. Hence no mapping. L3 3 CO3 PO12 L3 Life long Learning: The life long learning of laser is required to L3 identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - This does not have any impact on society.						
mapping. 3 CO3 PO11 L3 No Mapping - There is no project management. Hence no mapping. L3 3 CO3 PO12 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge L3 is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - This does not have any impact on society.	3			L3	diffraction grating, magnetic field and newtons ring in day to day	
CO3 PO12 L3 Life long Learning: The life long learning of laser is required to identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - This does not have any impact on society.	3			L3		
identify the application in day to day life. 4 CO4 PO1 L3 Engineering knowledge: The acquisition of engineering knowledge is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - the content is not related to professional ethics.						
is required to understand band theory of solids which is required in understanding of different electronic components. 4 CO4 PO2 L3 Problem analysis: The problem analysis is required to identify the different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - the content is not related to professional ethics.					identify the application in day to day life.	
different materials using band theory of solids. 4 CO4 PO3 L3 Design and Development of solution: The design and development of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - the content is not related to professional ethics.					is required to understand band theory of solids which is required in understanding of different electronic components.	
of solution is required to study the process of optical fiber, photo diode and transistor experiments. 4 CO4 PO4 L3 Modern tool usage: Modern tools require the analysis and interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping – No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping – This does not have any impact on society. 4 CO4 PO8 L3 No Mapping – the content is not related to professional ethics.					different materials using band theory of solids.	
interpretation of working of optical fiber, photo diode and transistor. 4 CO4 PO5 L3 No Mapping - No tool content. 4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - the content is not related to professional ethics.					of solution is required to study the process of optical fiber, photo diode and transistor experiments.	
4 CO4 PO6 L3 The engineer and society: The engineer and society need to know the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping - This does not have any impact on society. 4 CO4 PO8 L3 No Mapping - the content is not related to professional ethics.					interpretation of working of optical fiber, photo diode and transistor.	
the applications of optical fiber, photo diode and transistor in day to day life. 4 CO4 PO7 L3 No Mapping – This does not have any impact on society. 4 CO4 PO8 L3 No Mapping – the content is not related to professional ethics.	_					
4 CO4 PO8 L3 No Mapping - the content is not related to professional ethics.					the applications of optical fiber, photo diode and transistor in day to day life.	L3
4 CO4 PO9 L3 Individual and team work: Individual and team work is required to L3	4					
	4	CO4	PO9	L3	Individual and team work: Individual and team work is required to	L3

			recognize and identify the application of the experiments in day to day learning which are used in projects.	
4	CO4 PO1	.0 L3	No Mapping - There is no design and document, hence no mapping.	
4	CO4 PO1	.1 L3	No Mapping - There is no project management. Hence no mapping.	
4	CO4 PO1	.2 L3	Life long learning: The life long learning of semiconductors and optical fibers is required to recognize and identify the application of the experiments in day to day work.	

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

<u>CO -</u>	PO Mappin	g with mapping level for each	co	-PC) pa	air,								atta	aini	mei	nt.	
-	-	Experiment Outcomes							ram									-
Expt	CO.#	At the end of the	PO			PO	l	PO	PO									Lev
		experiment student	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	el
		should be able to																
1		Students should be able to-		√	√		-	√	-	-	√	-	-	√	-	-	-	L3
		Apply the knowledge of																
		oscillations, frequency and																
		resonance concept and their																
		practical applications		L.										<u> </u>				
1		Use and identify the Elastic	√	√	√	√	-	√	-	-	√	-	-	√	-	-	-	L3
		moduli and Moment of inertia																
		of given materials	,	,	,	,		,			,			,				
2		Understand and apply the	V	√	V	√	-	√	-	-	√	-	-	√	-	-	-	L3
		concept of Interference of																
		light, Diffraction of light,																
		Fermi energy and magnetic effect of current.																
2		Understand and use the	1/	V	V	V	_	V			V			1/				L3
-		principles of operations of	V	*	\ '	\ '	_	\ '	_	_	\ \	_	_	*	_		_	
		optical fibers and																
		semiconductor devices using																
		a simple circuits.																
-		Average attainment (1, 2,	2	3	2	2		3			2			2				-
		or 3)																
-		1.Engineering Knowledge; 2.																
		Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool																
		Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics;																
		9.Individual and Teamwork; 10.Communication; 11.Project Management and																
		Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base																
		Management; S3.Web Design																

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

18PHY16 rights reserved.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

	ent.										
Unit	Title	Teachi	·							CO	Levels
		ng		CIA-2	CIA-3	Asg-	Asg-	Asg-	SEE		
		Hours				1	2	3			
1	Radius of curvature of plano	02	1	-	1	-	-	-	1	CO3	L3
	convex lens using Newton's										
	rings.										
2	Calculation of Dielectric	_	1	-	1	-	-	-	1	CO4	L3
	constant by RC charging and										
	Discharging		_		_						
3	Determine Wavelength of		1	-	1	-	-	-	1	CO3	L3
	semiconductor laser using										
	Laser diffraction by calculating										
4	grating constant. Study Series and parallel LCR	02	1		1				1	CO1	L3
4	resonance and hence Calculate		1	-	1	-	-	-	_ т	COI	L3
	inductance, band width and										
	quality factor using series LCR										
	Resonance										
5	Estimation of Fermi Energy of	02	1	-	1	-	_	_	1	CO3	L3
	Copper										
6	n & I by Torsional pendulum.	02	1	-	1	-	-	-	1	CO2	L3
7	Study of input and output	02	-	1	1	-	-	-	1	CO4	L3
	Transistor characteristics and										
	hence calculate input										
	resistance, ✓ alpha and ॐ beta			_	_				_		
8	Draw photo diode	_	-	1	1	-	-	-	1	CO4	L3
	characteristics and calculate										
	power responsivity	00		1	1				-	602	
9	Young's modulus of a beam by	02	-	1	1	-	-	-	1	CO2	L3
10	Single Cantilever experiment. Determination of spring	02	_	1	1	_			1	CO1	L3
10	constants in Series and Parallel	_	_			-	-	-	Т	COI	LS
	combination										
11	Determination of Magnetic field	02	_	1	1	_	_	_	1	CO3	L3
	intensity at the center of a			_	_				_		
	circular coil carrying current (by										
	deflection method).										
12	Determine Acceptance angle	02	-	1	1	-	-	-	1	CO4	L3
	and Numerical aperture of an										
	optical fiber										
-	Total	24	4	4	4	0	0	0	12	-	-

2. Continuous Internal Assessment (CIA)

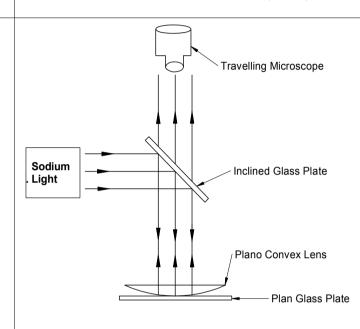
Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	40	CO1, CO2, CO3, CO4.	L3
CIA Exam – 2	40	CO1, CO2, CO3, CO4.	L3
CIA Exam - 3	40	CO1, CO2, CO3, CO4.	L3

Final CIA Marks	40	-	-
define - Slip test			_
Other Activities -		_	_
Seminar - 3	00	-	-
Seminar - 2	00	-	-
Seminar - 1	00	-	-
Assignment - 3	00	-	-
Assignment - 2	00	-	-
Assignment - 1	00	-	-

SNo	Description	Marks
1	Writeup	16 Marks
2	Experimental setup	10 Marks
3	Experiment conduction	40 Marks
4	Calculation, graph and results	20 Marks
5	Vivoce	14 Marks
-	Total	100 Marks

E. EXPERIMENTS


Experiment 01: Newtons Ring

-	Experiment No.:	1 Mar	ks	16	Date Planned		Date Conducte d	
1	Title	Newtons	Ring				<u> </u>	
2	Course Outcomes	Understar	Understand and apply the concept of Interference of light, Diffraction of light, Fermi energy and magnetic effect of current.					
3	Aim		To determine the radius of curvature of a given Plano-convex lens using the method of Newton's rings.					
	Material / Equipment Required	Traveling microscope, Plano-convex lens. Glass slide, Sodium light, Beam splitter						
	Theory, Formula, Principle, Concept	The radius of curvature of a given Plano-convex lens is given by, $R = \frac{(D_m^2 - D_n^2)_{avg}}{4\left(m - n\right)\lambda} m$						
		Where, $D_m \ ^{\mathbb{C}} \ - \ diameter \ of \ the \ m^{th} \ bright \ ring, \ m$ $D_n \ ^{\mathbb{C}} \ - \ diameter \ of \ the \ n^{th} \ bright \ ring, \ m$ $(m-n) \ ^{\mathbb{C}} \ - \ difference \ between \ the \ m^{th} \ and \ n^{th} \ bright \ rings$ $\lambda \ - \ ^{\mathbb{C}} \ wavelength \ of \ sodium \ light = 5893 \ \mathring{A}$						
6	Procedure	microscop convex le light bear reflected	oe is ens. T m) so on t	placed such The inclined o that the l the plane g	p as show that its obj glass plate ight rays fr lass plate, he microsco	ective is ding e is tilted (om the soo and the fio	rectly above (at 45° to t dium vapou eld of view	the plano- he incident r lamp are is brightly

Rings are clearly seen. Travelling microscope screw (in vertical mode) is moved such that the cross wire is tangent to the 8^{th} bright ring on the left side and the corresponding travelling microscope reading [TR=MSR+(CVDXLC)] is recorded. Similarly the readings corresponding to 7^{th} , 6^{th} are recorded. Same procedure is followed for the right side rings also from 1^{st} to 8^{th} ring. Diameter of the each ring is found. Then, D_m^2 - D_n^2 is calculated by successive difference method for (m-n) = 3. Then radius of curvature of the plano-convex lens is found using the formula

$$R = \frac{(D_m^2 - D_n^2)_{avg}}{4(m-n)\lambda} m$$

7 Block Diagram

8 Observation Table

Ring no.		M ding	Dia met er	D _m ² (m ²	Ring no.		M ding	Diamet er	D _n ² (m ²	D _m ² - D _n ² (m ²)
(m)	Lef t L _m	Rig ht R _m	= L _m - R _m (mm)	(n)	Lef t L _n	Rig ht R _n	$\begin{array}{c} Dn = \\ L_n - R_n \\ (mm) \end{array}$)	(m²)
6					3					
5					2					
4					1					
	$(D_{m}^{2}-D_{n}^{2})_{avg} =$									

9 Sample Calculations

$$R = \frac{\left(D_m^2 - D_n^2\right)_{avg}}{4\left(m - n\right)\lambda}m$$

10	Graphs	NO graphs
11		The radius of curvature of the given plano-convex lens using the
		method of Newton's rings is found to be R=m.
12	Application Areas	To Measure the Wavelength of light.
13	Remarks	
	Faculty Signature	
	with Date	

Experiment 02: Dielectric constant

-	Experiment No.:	1	Marks	16	Date Planned	Date Conducted			
1	Title	Diele	ctric consta	nt					
2	Course Outcomes					operations of optical	fibers and		
			semiconductor devices using a simple circuits						
3	Aim		Calculation of Dielectric constant by RC charging and Discharging						
4						al stop clock, digital			
	Equipment	resist	or of know	n value	, capacitor of kn	own dimensions, patch	cords.		
_	Required	D: 1							
5	Theory, Formula,	Diele	ctric consta	ant,					
	Principle, Concept								
	Concept		J. V10-	6					
		K=	$\frac{dt_{1/2} X 10^{-1}}{0.693 \varepsilonoAB}$	_					
			0.693 <i>εοΑΙ</i>	?					
				• *1					
					A is area in m^2 , = 2.5 cm and b =	- 1 E cm \			
			A= I X D	(1 =	= 2.5 Cm and b =	= 1.5 Cm)			
		d is tl	ne thicknes	s of the	e material in mm	l ,			
		R is ti	he resistan	ce in ol	nms,				
		T _{1/2} is	in seconds	5,					
		εο =	8.854x10 ⁻¹	² F/m, is	s the permitivity	of free space			
6	Procedure,		GING MOD		, ,	·			
			The togg	le swit	ch S is set to c	harge mode and simu	ıltaneously		
						tion. At this instant the			
						ediately start noting			
						terval from zeroth seco			
						ve readings remain c			
					age readings ar	e entered in the tabul	ar column,		
			r charge m		ust bo $V = 0$ for	t = 0 [This can be ac	shiowed by		
					e capacitor].	t – 0 [IIIIS call be at	lileved by		
		511010	ing two cin	a5 01 til	e capacitor].				
		DISC	HARGING M	10DE					
			When V is	s maxin	num in charge m	ode reset the timer to	zero using		
						diately change the tog			
						Itage in similar way as			
						ed in the tabular colu			
					= U, the same m	aximum value of V dur	ing charge		
		mode	to be reta		attad with time	t in coconds along V	avic and		
		volta				t in seconds along X bint where both the ch			
						intersect; from ther			
		Cuive	and dis	charge	mode curve	meerseet, mom ther	c diop a		

perpendicular line to time axis which gives $t_{1/2}$ in seconds. From the known the values of R, A and d the value of dielectric constant and value of the capacitor can be calculated using the relations 7 Circuit Diagram R (220kΩ) DSC Charging connection S Discharging connection 8 Observation **OBSERVATIONS:** Table, Dependence of capacitor's voltage on time: $R = 100 \text{ k}\Omega$ $C = C_1$ Voltage across C (V) Time (seconds) Discharge Charge mode mode 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9 Sample $K = \frac{dt_{1/2} X 10^{-6}}{4t_{1/2} 10^{-6}}$
9 Sample $K = \frac{dt_{1/2} X \cdot 10^{-6}}{4t_{1/2} X \cdot 10^{-6}}$
9 Sample $K = \frac{dt_{1/2} X \cdot 10^{-6}}{dt_{1/2} X \cdot 10^{-6}}$
9 Sample $K = dt_{1/2} X \cdot 10^{-6}$
9 Sample Calculations $K = \frac{dt_{1/2} X \cdot 10^{-6}}{0.693 \varepsilon o AR}$
9 Sample Calculations $K = \frac{dt_{1/2} X \cdot 10^{-6}}{0.693 \varepsilon o AR}$
9 Sample Calculations $K = \frac{dt_{1/2} X \cdot 10^{-6}}{0.693 \varepsilonoAR}$
9 Sample Calculations $K = \frac{dt_{1/2} X \cdot 10^{-6}}{0.693 \varepsilon o AR}$
Calculations $K = \frac{1}{0.693 \epsilon o AR}$
10 Graphs, Outputs
Charge
× E
Voltage across the capacitor (V)
Voltage (1)
Discharge
$\begin{array}{c} t_{1/2} \\ \hline \text{CS} \\ \text{Scanned with} \\ \hline \text{CamScapper} \end{array} \qquad \begin{array}{c} \text{Time (s)} \\ \hline \end{array}$
11 Deculte CThe value of the diplostric constant of the material in the constant.
Results & The value of the dielectric constant of the material in the capacitor is Analysis .
12 Application Areas Can be used in switching circuits.
13 Remarks 14 Faculty Signature

Experiment 03: Laser Diffraction

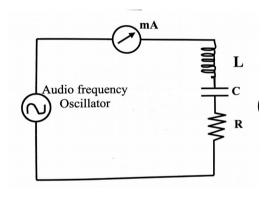
-	Experiment No.:	3	Marks		Date Planned		Date Conducte d	
1	Title	Dif	fraction					
2			Understand and apply the concept of Interference of light, Diffraction of light, Fermi energy and magnetic effect of current					
3	Aim	To study the diffraction of laser light and hence to determine its wavelength.						
	Material / Equipment Required	Diode laser source, grating with holder, scale, screen and thread.						
	Theory, Formula, Principle, Concept	λ	$=d\sin\theta_m(m)$	1)				

		d	= grating co or 500 numb	oth of laser li onstant meas oer of lines p	sured in m	d in m grating 'd' can be		
		$d = \frac{1 \times 10^{-1}}{500}$	$d = \frac{1 \times 10^{-3} m}{500}$					
		$sin heta_m = rac{X}{\sqrt{R^2 + X^2}}$ where m = difference between the order of spots $ heta_m$ = angle of diffraction for m th order spot						
		meas	x_m = distance between Zero th order spot and m th order spot measured in m R = distance between screen and grating measured in m					
6	Procedure	 Place the laser source on the holder and mount on the heavy base. Place the grating in its holder and the screen is placed at a distance of 3 to 4 meter. The grating is kept between the laser source and the screen. The laser beam after passing through the grating undergoes diffraction. The diffraction spots are observed on the screen. The distances 2x_m between the symmetrical spots on either side of 0th order are measured and recorded. The angle of diffraction θ_m and the LASER wavelength λ are calculated. 						
7	Block Diagram					Π		
		LASER BEAM ORATING ORATING SCREEN						
8	Observation Table	SI No	Distance	Distance		Sin θ		
			b/w grating & scale (R) in c m	b/w central to spot to first order spot	x (incm)	5 0		
				x ₁ (in c m	x ₂ (in c m)			
		1	10					

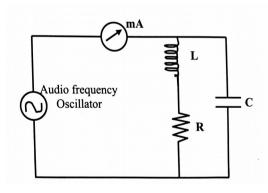
		2	15					
		3	20					
		'					_	
	_							
	Sample	$\lambda = d \sin \theta_m$	(m)					
	Calculations	a sirio m	()					
			v					
		$sin\theta_m = \frac{1}{\sqrt{2}}$	$\sin\theta_m = \frac{X}{\sqrt{R^2 + X^2}}$					
		" √ <i>F</i>	$2^2 + X^2$					
		No graphs						
11	Results & Analysis	The waveler	ngth of the g	jiven Laser l	ght source i	S		
			m.					
12	Application Areas	To measure	the Waveler	ngth of light.				
13	Remarks		_	·				
	Faculty Signature			·			<u> </u>	
	with Date							

Experiment 04: Series and Parallel LCR resonance

-	Experiment No.:	4 Marks		Date Planned		Date Conducte		
						d		
	Title	Series and par						
2	Course Outcomes		Apply the knowledge of oscillations, frequency and resonance concept and their practical applications					
3	Aim	Study the series and parallel LCR resonance and hence Calculate inductance, band width and quality factor using series LCR Resonance						
4	Equipment Required	Audio frequency oscillator, inductance coil, capacitors, resistors, milliammeter						
5	Theory, Formula, Principle, Concept	1) The resonance frequency of the circuit is given by						
		$f_r = \frac{1}{2\pi\sqrt{LC}}$ Where, L= Value of Inductance = 0.2 Henry.						
		C=Value of the capacitance = $0.01\mu\text{F}$. 2) Bandwidth,						
				$\Delta f = (f_2 \cdot$	· f ₁) _{Hz.}			
			Where f ₂ =	Jpper cut of	f frequency	, Hz.		
			$f_1 = 1$	_ower cut of	f frequency	, Hz.		
		3) The quality	factor of the	e circuit is g	iven by			
				$Q = \frac{f}{f_2}$	$\frac{r}{f_1}$			
6	Procedure	SERIES RESON The electrical Fig (a). Set the the oscillator i time the corr graph by takin	connections amplitude s varied from esponding	s are made knob to ma m 1 KHz to milliammete	iximum pos 7 KHz in ste er readings	ition. The freps of 500 H are tabula	equency of Iz and each ted. Plot a	


mA) along the Y-axis as shown below. The frequency corresponding to the maximum value of current (I_{max}), which is called the resonance frequency f_r is noted from the graph. The maximum value of current (I_{max}) of a resonance curve for a particular value of C and R is noted. A straight line parallel to X-axis corresponding to the value of $I_{max}/ \, ^{\circ} 2$ is drawn such that the line cuts the curve at two points on either side of the resonance frequency. The frequencies f_1 and f_2 corresponding to these points are noted down.

PARALLEL RESONANCE CIRCUIT


The electrical connections are made as shown in the circuit diagram, Fig (b). Readings are tabulated and graph is plotted as described in the case of series resonance circuit. In this case the resonance occurs when current is minimum. Hence the frequency corresponding to I_{min} gives the resonance frequency f_r of the circuit. A straight line parallel to X-

axis corresponding to the value of $I_{\min}\sqrt{2}$ is drawn such that the line cuts the curve at two points on either side of the resonance frequency which gives the upper cut-off frequency (f₂) and lower cut-off frequency (f₁).

7 Circuit Diagram

Series Resonance

Parallel Resonance

8 Observation Table

Series Resonance

 $R = 1 K\Omega$, $C = 0.01 \mu F$, $L = L_2$

Frequency (kHz)	Current (mA)
1	
1.5	

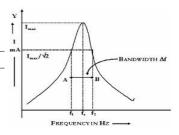
2	
2.5	
3	
3.5	
4	
4.5	
5	
5.5	
6	
6.5	
7	

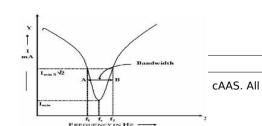
Parallel Resonance

$$R$$
 =1 $K\Omega$, C = 0.01 μF , L = L_2

Frequency (kHz)	Current (mA)
1	
1.5	
2	
2.5	
3	
3.5	
4	
4.5	
5	
5.5	
6	
6.5	
7	

9	Sample
	Calculations


1. From the known value of capacitance (C) and Inductance (L), the value of the Resonant frequency can be calculated using the relation


$$f_{r} = \frac{1}{2\pi\sqrt{LC}}$$
 KHz

2. The bandwidth and quality factor of the given circuit is calculated as shown below

18PHY16 rights reserved.

		Series Resonance Parallel Resonance
11	Results & Analysis	SERIES RESONANCE 1. The value of the Resonant Frequency from the formula = KHz 2. The value of the Resonant Frequency from the Graph = KHz 3. Bandwidth = KHz 4. Quality factor = PARALLEL RESONANCE 1. The value of the Resonant Frequency from the formula = KHz 2. The value of the Resonant Frequency from the Graph = KHz 3. Bandwidth = KHz
10	A 1' 1' A	4. Quality factor =
	Application Areas	Used in Radio Stations
	Remarks	
14	Faculty Signature with Date	

Experiment 05: Fermi Energy

		_								
-	Experiment No.:	5	Marks		Date Planned		Date Conducte			
					Fiailileu		d			
1	Title	Fer	mi Energy		1					
2	Course Outcomes		mi Energy derstand and apply the concept of Interference of light, Diffraction of it, Fermi energy and magnetic effect of current. Imation of Fermi Energy of Copper oper coil, thermometer, test tube, beaker, digital voltmeter, ital ammeter, constant current source.							
3	Aim	Est	stimation of Fermi Energy of Copper							
4	Material ,	Co	pper coil, th	ermom	eter, test tube, b	eaker, digi	tal voltmete	er,		
	Equipment	dig	digital ammeter, constant current source.							
	Required									
5	Formula	1.	The Fermi e		f a given conduc					
			$E_{F} = \left(\frac{ne^{2}\pi Ar^{2}}{L\sqrt{2m}}\right)^{2} \times \left(\frac{\Delta R}{\Delta T}\right)^{2}$							
		Wh	here n = Electron density of copper, 8.464×10^{28} /kg mol.							
			e :	= (Charge on electro	on, 1.602x1	L0 ⁻¹⁹ C.			

			A =	Constan	t for copper,	7.4x10 ⁻⁶ .	
			r =	Radius c	f the given c	opper wire	, 0.26x10 ⁻³ m.
			L =	Length o	of the copper	wire, 3.6 r	n.
			m =	Mass of	electron, 9.1	x10 ⁻³¹ kg.	
			ΔR				
			$\Delta T =$	Slope of	the graph ob	tained on	plotting
				Resis	tance vs Ter	nperature.	
		2. The	Fermi tem	nperature is c	_		
					$T_f = \frac{E_f}{K_B}(K)$		
		Where	E _F =	Fermi er	ergy of the c	opper coil	, (J).
6	Procedure	2) T sthro diag 3) T say ab 4) Not	out 80º C. e down t		and current	values fo	(J/K). ni energy has to be aken in a test tube bath. ant current source own in the circuit betady temperature or different cooling
7	Circuit Diagram	5) Rep current 6) Calc 7) Plot the slo 8) The	lace the reading fulate the the graph pe. Fermi end	hot water by for room tem resistance of n of resistanc	cold water perature. the coil for e e versus tem Fermi tempe	and note each tempe perature a	down voltage and
8	Observation Table	To dote	rmina tha	variation of	Dosistanco w	iith Tompo	raturo
0	Observation lable	lo dete	imme me	variation of	Resistance w	ntii lempei	ature:
		SI.	Tempe	erature (T)	Current	Voltag	Resistance
		No.	ōС	ōΚ	(mA)	e (mV)	(Ω)
		1	77				
		2	72				
		3	67				
		4	62				
		5	57				
		³	/د				

		6 52
		7 RT
	Sample Calculations	1) The Fermi energy of a given conductor is related as $E_F = \left(\frac{ne^2\pi Ar^2}{L\sqrt{2m}}\right)^2 \times \left(\frac{\Delta R}{\Delta T}\right)^2 \ \text{J}.$ 2) The Fermi temperature is calculated as $E_F = \left(\frac{ne^2\pi Ar^2}{L\sqrt{2m}}\right)^2 \times \left(\frac{\Delta R}{\Delta T}\right)^2 \ \text{J}.$
		$T_f = \frac{E_f}{K_B}(K)$
10	Graph	0.65 - (Hy) 0.60 - 0.55
11	Results & Analysis	1) The Fermi energy of the given conductor is found to be eV. 2) Fermi temperature of the given conductor is found to be K.
12	Application Areas	Helps in Studying thermal properties of material
	Remarks	
14	Faculty Signature with Date	

Experiment 06: Rigidity Modulus by Torsional Pendulum

-	Experiment No.:	6	Marks		Date Planned		Date Conducte d
1	Title	Torsional pe	endulum.				
2	Course Outcomes	Use and ide materials	entify the Ela	astic moduli	and Mome	nt of inertia	of given
3	Aim	Determine by Torsiona			of the ma	terial of the	e given wire
	Material / Equipment Required	tCircular pla chuck nuts,					ss wire with

		Theory, Formula, Principle, Concept	$1. I = \frac{MR^2}{2} \text{Kg.m}^2$
			Where, M = Mass of Circular disc in Kg. R = Radius of the circular disc in m.
			$2. n = \frac{8\pi I}{r^4} \left(\frac{l}{T^2}\right) \qquad \text{N/m}^2$
			Where, $[I/T^2]_{mean} = The mean value of moment of inertia over period square for regular bodies, kg-m²/sec². I = Length of the wire between the two chuck nuts (m). r = Mean radius of the given wire (m). n = Rigidity Modulus in N/m².$
•	6	Procedure,	 One end of the wire is rigidly clamped to the stand and the other end is fixed to the circular disc with the help of chuck nuts as shown in the figure.
			The chuck nut screwed to the circular plate is rotated through a small angle so that it performs torsional oscillations.
			Time taken for 10 oscillations is noted down twice in each case and their corresponding periods are calculated.
			 The Experiment is repeated for different length (I) of the wire between the chuck nuts.
			The length of the shearing wire between two chuck nuts areb measured by using thread and meter scale.
			The rigidity modulus 'n' of the material is calculated using the formula,
			$n = \frac{8\pi I}{r^4} \left(\frac{l}{T^2}\right) \text{N/m}^2$
			chuck mit
-			
	7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	IRomen Wine
			Circular disc

18PHY16 rights reserved.

yright ©2017. cAAS. All

8	Observation Table	Mass of the circular plate, M = kg.
		Radius of the circular plate,= m
		$R = \frac{circumference}{2\pi}$ Length of the wire between the two chuck nuts, I = m.
9		1. $I = \frac{MR^2}{2}$ Kg.m ² 2. $n = \frac{8\pi l}{r^4} \left(\frac{I}{T^2}\right)$ Nm ⁻²
10	Graph	No graph
11	Results & Analysis	The moment of inertia of the given irregular body, $I_o =kg-m^2$. The rigidity modulus of the material of the given wire, $n =N/m^2$.
12	Application Areas	 One's body movement to the side when a car makes a sharp turn. Tightening of seat belts in a car when it stops quickly. A ball rolling down a hill will continue to roll unless friction or another force stops it.
	Remarks	
14	Faculty Signature with Date	

Experiment 07: Transistor characteristics

-	Experiment No.:	7	Marks		Date Planned		Date Conducte d	
1	Title	Tra	nsistor cha	racteristics				
2			Inderstand and use the principles of operations of optical fibers and emiconductor devices using a simple circuits.					
3	Aim		idy of input ut and outp				ics and hend	e calculate

4	Material , Equipment Required	NPN transistor, variable DC power supplies, DC micro ammeter, DC milli ammeter, DC voltmeter and connecting wires.
5	Theory, Formula, Principle, Concept	Input resistance, (R _i) $R_i = \frac{-K_{BE}}{\Delta I_B} =K\Omega$
		Output resistance (Ro) $R_o = \frac{\Delta V_{CE}}{\Delta I_C} =\Omega$
		The current gain ' β ' (common emitter configuration) is given by $\beta = \frac{Ic_2 - Ic_1}{Ib_2 - Ib_1}$
		The current gain ' α ' is given by $\alpha = \frac{\beta}{1+\beta}$
6	Procedure	The circuit connections are made as shown in the figure.
		INPUT CHARACTERISTICS
		 To start with, the collector emitter voltage (V_{CE}) is made constant; to be saying 2V. Vary V_{BE} from 0.1V to 0.7V in steps of 0.1V and note down the corresponding base current (I_B) readings. A graph V_{BE} verses I_B at constant V_{CE} is plotted by taking V_{BE} along X-axis and I_B along Y-axis. The graph is drawn for various values of V_{CE}.
		OUTPUT CHARACTERISTICS
		 The base current I_B is kept constant say 25μA. Vary V_{CE} from 0.1V to 0.8V in steps of 0.1V and note down the corresponding I_C readings. The experiment is repeated for I_B = 50μA. A graph is drawn for various values of I_B, taking V_{CE} along X-axis and I_C along the Y-axis.
7	Circuit Diagram	V _{BB} (0-30V) V _{CE} (0-20V) V _{CC} (0-30V)

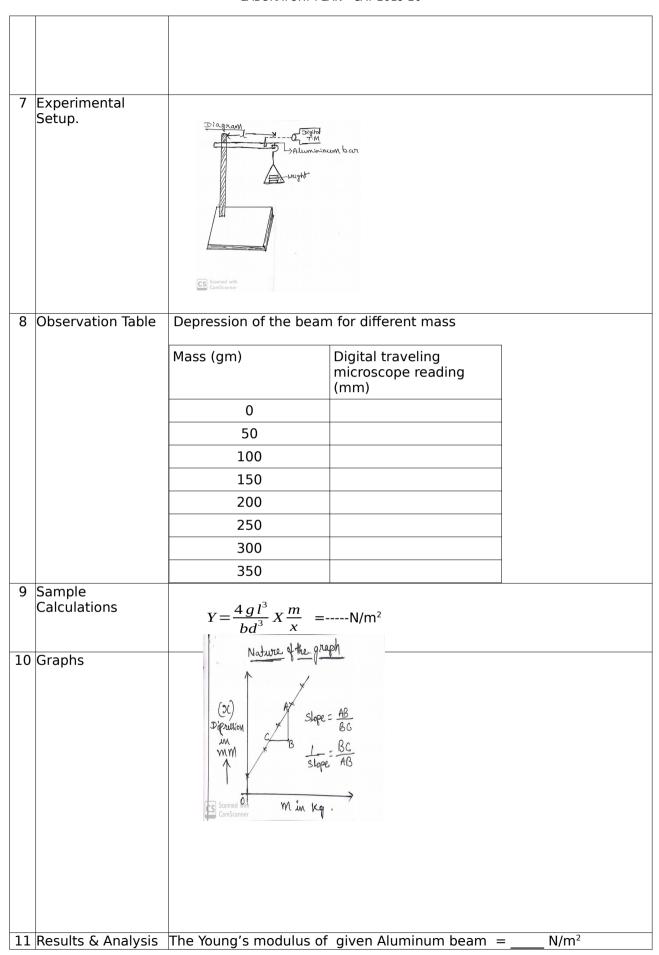
		LABORATORY P	LAN - CAY 2019-2	20				
Observation Table	INPUT (CHARACTERISTI	CS					
	[V_{CE}	= 2V					
	<u> </u>	V _{BE} in (V)	I _B in (μ	Α)				
		0.1						
		0.2						
		0.3						
		0.4						
		0.5						
		0.6						
		0.7						
	OUTPU	T CHARACTERIS	TICS					
		I _B = 2	5μΑ	I _B =	50μA	7		
		V _{CE} (V)	I _c (mA)	V _{CE} (V)	I _C (mA)	1		
		0.1		0.1		1		
		0.2		0.2				
		0.3		0.3				
		0.4		0.4				
		0.5		0.5				
		0.6		0.6				
		0.7		0.7				
	L							
9 Sample Calculations	The current gain ' β ' (common emitter configuration) is given by $\beta = \frac{\Delta I_C}{\Delta I_B}$ at constant V_CE.							
	The cu	rent gain 'α' is		at constant	V CE.			
	THE CUI	rent gant α is		β				
			α =	$\frac{\beta}{1+\beta}$				
0 Graphs				gr				
	idelisti.	odes Characteria	rista ida	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	->IB= 50MA			
PHY16 hts reserved.	↑ 1 _B	sinso 3 sham Va	ng = 2 y	H J	$F_{8} = \frac{BC}{AB} = \cdots$	۱S.		

(MA)

Scanled with VBE (V)

Scanned with

		Input Characteristics Output Characteristics
11		The input and output characteristics of the given NPN transistor are drawn and hence 1. Input resistance, $(R_i) =K\Omega$ 2. Output resistance $(Ro) =\Omega$ 3. The current gain, $\beta = \underline{\hspace{1cm}}$. 4. The current gain $\alpha = \underline{\hspace{1cm}}$.
		Used in switching circuits and amplification circuits
13	Remarks	
14	Faculty Signature with Date	


Experiment 08: Photo diode characteristics

-	Experiment No.:	8	Marks		Date		Date		
				P	lanned		Conducte d		
1	Title	Pho	Photo diode characteristics						
	Course Outcomes	inte	Inderstand and analyze the principles of photo electric current, & ntensity by using semiconductor in a simple circuits.						
	Aim	as	function of	aracteristics in reverse voltage	e and int	ensity	•		
	Equipment Required	exp	perimental b	inator, Voltmet poard and powe	er supply	′			
5		sat illu V sat The of I	Photo diode is a two terminal junction diode in which the reverse saturation current changes when it's reverse biased junction is illuminated by suitable wavelength of light. When a p - n junction is reverse biased, a small amount of reverse saturation current is due to thermally generated electron - hole pairs. The number of these minority charge carriers depends on the intensity of light incident on the junction. When the diode is in a glass package, light can reach the junction and thus changes the reverse current						
6	Procedure	1. dia 2. V cur by 3.R the 4.D as 5.T Par 1. 2. H in t	gram, takin Vary the volute of	al connections g care that photograph of tage from 0 to wer 10 mw con experiment by contabular columnaph by taking the odel graph. The connection are ltage (V) =1volument and correspondent and correspondent are graph and correspondent.	oto diode 2 volts a stantly. changing in. he voltag as showr connecte lts const	e is reverse and correspond the power ge on x'-axis in in graph. ed as showr ant, the var	biased. condingly me to 30 mw. N s and currer in the circuly the power	lote down It on Y'-axis Lit diagram Tas shown	

8	Circuit Diagram Observation Tabl	show in the 4.Join all pos	graph. ssible points, w	e get stra astic mod	aight line	and current on y'- axis as e as shown in model graph. Moment of inertia of given
		10	2.5			
9	Sample	No Calculati	on			
10	Calculations Graphs				(m)	DATE OF THE PARTY YOU
11	Results & Analysis	The I - V cha	aracteristics of	_	n photod	iode for different intensity
			ted in the grap			
	Application Areas Remarks	Used in Rem	note Control, CI) players	, Televis	ion
	Faculty Signature with Date					

Experiment 09: Young's modulus by Single Cantilever method

-	Experiment No.:	8 Marks		Date		Date	
				Planned		Conducte d	
1	Title	Young's modu	lus by Single	Cantilever	method		
	Course Outcomes	Use and ident materials				of inertia of	given
3	Aim	To determine Single Cantile		Modulus o	f given Alu	minum bea	m by using
4	Material , Equipment Required		eam, slotte			s), digital er scale	travelling
5		Young's module determine proteins experime 3cm width an with a screw weights. The digital travelliforce is measure $Y = \frac{4 g l^3}{b d^3} X$ Where	operties of means operties of means operties of means operties of means operties operated and you will be a substitute of means o	naterial in toused an allow which is a continuous conti	ne form of uminum be of this be to applie the beam pression of us is calculated the open erewerem and	a rectangulam about 3 am is fixed ed by hangh is monitor the beam fated using e	ar beam. In Cocms long, to a stand ing slotted red using a for different equation
6	Procedure	1. The experidigital travelling. Now the inhorizontal telesconneided with 4. 50gm weign cantilever berong is not 6. Trial is repease the point corresponding recoded in Tak 7. Trial is contithe horizontal 8. The length end of open eign cantilever bear 10. A graph is along Y-axis at the slope is de 12. Young's military in the	ng microscope in icroscope is adjusted in the horizon the is again and depression to the cantinued till 35 cross wire the horizon the cantinued till 35 cross wire the cantinued till vernier in is noted a drawn taking shown in Fietermined	pe reading is placed in put 5-6 cm fusted to so tal cross wis now loader in the micrew is adjusted coincided wis noted. Ogms and ended the depressible is meter scale the thickness migure using	s set to aro front of t from the pole ee clearly re. d to the ca roscope mo isted such wire and ght in step with the ho in the trav each case co on is noted. easured fror ess (t) an along the x Excel. From	und zero mine cantilever on the pointer on the intilever due to the pointer of the the pointer of the the pointer of the fixed of the straight in the straight in the straight.	m. er with the cantilever and it is e which the binter again microscope and in each as wire and oscope and e pointer to end till the (b) of the epression x

12	Application Areas	The elastic moduli measures the stiffness of the building materials.
13	Remarks	
	Faculty Signature with Date	

Experiment 10: Series and Parallel Combinations of Spring

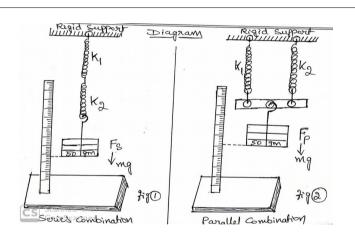
_	Experiment No.:	8 Marks	Taller combil	Date		Date	
	Experiment No.:	o Marks	F	Planned		Conducte	
			-			d	
1	Title	Series and p	arallel combina	ations of s	pring		
2	Course Outcomes		nowledge of osc actical applicati		frequency a	nd resonan	ce concept
3	Aim To		tion of given s		stants in Se	ries and Par	allel
1							
	Material / Equipment Required	•		i Stariu, Si	otted weigi	its, Digital E	balance etc.
5	Formula	1) Spring co		F			
		$k = \frac{F}{x} \qquad in Nm^{-1}$					
		Where, F - Force applied (= mg) in N. x - Displacement produced in the spring in m					
		2) Spring co	onstant for Seri	es combir	ation of sp	rings,	
		$k_{Series} = \frac{k_1 k_2}{k_1 + k_2} in Nm^{-1}$					
			onstant for Para $= k_1 + k_2 \qquad in I$		nation of s	orings,	
6	Procedure	load(w=100 in cm. 2. Add some down the we 3. Repeat the time. The corresponding the find out a Part-2	is hooked gm).note down e more load integrated the trial until the load displacement overage spring of the pring -1 is removered.	the posit to the we ling as 'b' e total ma nt 'b' is no constant k	ion 'a' of the signal hanger in cm and wass 250gm at the signal the signal hanger in the sig	he pointer of the poi	on the scale n) and note e. 50gm each
		Experim correspondi	nent is repea ng displacemer g constant k ₂ is	ated by its are tab	using pa oulate in tak	rt-A proce ble-2	dure. And
			& Spring-2 are	connecte	ed in series	and hooke	ed the rigid

support as shown in figure.

2. Add 100gm(w) dead load to the series combination and the corresponding

displacement 'a' is note down in cm.

- 3. Add 50gm more load into the weight hanger and note down the weight edge reading 'b' in cm and write in table-3
- 4.Trial is continued by increasing the mass in steps of 50gm upto 250gm. And


the corresponding displacement(b) are noted in table-3

5. The series spring constant(K_s) can be calculated by using formula-3

Part-4

- 1. The mass es are removed from the spring and the two springs are now connected in parallel as shown in the figure 2.
- 2. The experiment is repeated by using part 3 procedure. And the corresponding readings are tabulated in table 4.
- 3. The parallel spring constant (K_p) can be calculated using the formula 4.

7 Experimental Setup.

8 Observation Table, Look-up Table, Output

Table-for k_1

Pointe	Pointer reading with initial load(w), $a = \dots cm$									
SI. No	1		Spring stretc h x= b-a (cm)	Force F= mg (N)	Spring constan t (N/m)					

Average $k_2 = \dots N/m$

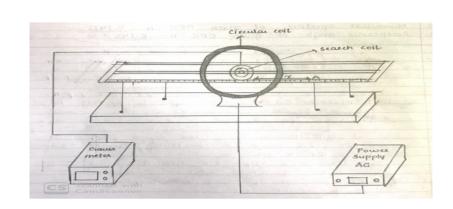
Table-for k₂

Pointer reading with initial load(w), a = cm

SI.	Load	Pointer	Spring	Force	Spring
No	(gm)	reading	stretch	F= mg	constan

				b(cm)	x= b-a (cm)	(N)	t (N/m)	
						Avera	$ge k_2 = .$	N/m
		Table	fork					
			e-for ks r readi	ng with ir	itial load	d(w), a =		cm
		SI. No	Load (gm)	Pointer reading b(cm)	Spring stretc h x= b-a (cm)	Force F= mg (N)	Spring constan t (N/m)	
						Averag	$k_2 =$	N/m
			e-for k _p r readi	ng with ir	nitial load	d(w), a =	·	cm
		SI. No	Load (gm)	Pointer reading b(cm)	Spring stretc h x= b-a (cm)	Force F= mg (N)	Spring constan t (N/m)	
9	Sample Calculations					Avera	ge $k_2 =$	N/m
J		$k = \frac{F}{x}$	in	Nm^{-1} $\frac{2}{k_2} in$				
		k_{Series}	$=\frac{k_1 k}{k_1 + k_2}$	$\frac{2}{k_2}$ in	<i>Nm</i> ⁻¹			
		$k_{\it Paralle}$	$_{l}=k_{1}$ +	·k ₂ in	<i>Nm</i> ⁻¹			
	Graphs, Outputs Results & Analysis	No Gra		nnstante f	or the cr	nrings ar	e found to	be, $k_1 =$
11	nesults & Allalysis		N/		01 1116 3	Jillys al	c round to	, DE, N ₁ -

		The sp	$k_2 = \dots N/m$ he spring constants for the combination of springs are found to be,					
			Combinatio n	Theoretical	Experimental			
			Series	K _{series} =	K _{series} =			
			Parallel	K _{parallel} =	K _{parallel} =			
12	Application Areas	Used i	in Clocks, Scient	tific Instruments, Fax Ma	chine and Radio Stations			
13	Remarks							
14	Faculty Signature with Date							

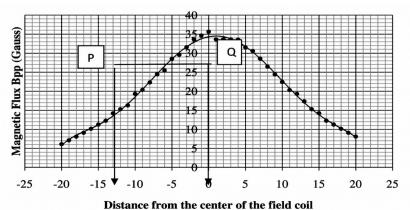

Experiment 11: Magnetic Field

-	Experiment No.:	11 Marks		Date Planned		Date Conducte		
1	Title	MAGNETIC FIE	L D INTENSIT	V		d		
	II.					nd recepen	a concept	
2	Course Outcomes	Analyze and id and their prac			requency a	no resonano	ce concept	
3	Aim	To determine to coil carrying deflection metals	current and					
4	Material , Equipment Required	Deflection ma	Deflection magnetometer, sprit level, commutator, ammeter, variable power supply and connecting wires.					
5		The magnetic field intensity, Horizontal component of earth's magnetic field, in T Where, = Permeability of free space = 4π x 10 -7 H m -1 . n = number of turns in the coil. (n = 140 turns) I = Current through the coil in amp. a = Radius of the coil in m. (a = 12 cm) x = distance between the centre of the coil and pointer in the compass box in m. = mean deflection in magnetometer in deg.						
6	Procedure	 Arrange t meridian of the meridian of the magnetom Keep the case x = 0 Pass a cucorrespond The direct and the of noted. Average deficiency 	ctions are mand the deflection of the earth the plane of the magnetomet.	ade as shown of the fine coil were exactly of the coil were defined in the coil was a second of	who in the cirmagnetomore with respect at the cent flow through ections θ_1 are sed by using the meter definition of the control of the co	cuit diagrameter in the to 90° - 90° are no sing the corections θ_3	Ine of the oil (for this oil and the oted. mmutator C and θ_4 are	

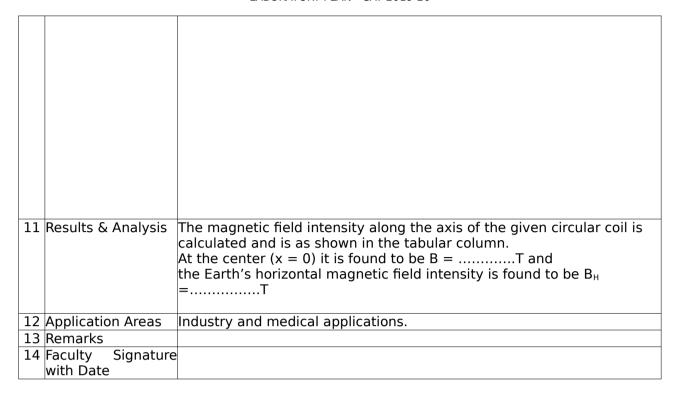
 $B = \frac{\mu_0 n l}{2} \frac{a^2}{(a^2 + x^2)^{\frac{3}{2}}}$

- given formula $(a^2 + x^2)^{n/2}$ and also B_H. Repeat the experiment for different values of x (say 5cm, 10cm, ...)
- by sliding the magnetometer along the axis. 10 Find the average of both B and B_H.
- 7 Experimental Setup. Expected Graph

9


8 Observation Table, Look-up Table, Output

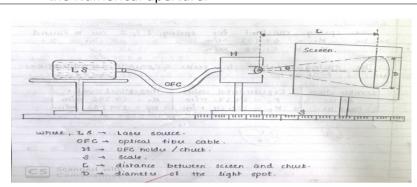
SI. No.	Distance from the center of the coil, x in cm.	Magnetic field left hand side of the coil B in gauss	Magnetic field Right hand side of the coil B in gauss
1	0		gg
2	2		
3	4		
4	6		
5	8		
6	10		
7	12		
8	14		
9	16		
10	18		
11	20		


9 Sample Calculations

10 Graphs, Outputs

18PHY16 rights reserved.

AAS. AII


Experiment 12: Numerical Aperture

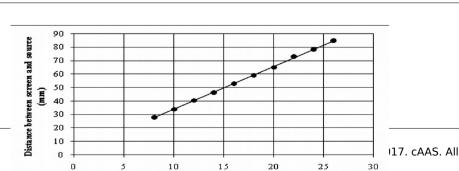
-	Experiment No.:	12 Marks		Date		Date		
				Planned		Conducte d		
1	Title	Acceptance angle and Numerical Aperture						
2	Course Outcomes	Understand and semicondu					al fibers	
3	Aim	To determine t given optical fi		nce angle a	nd Numeric	al aperture	of the	
	Equipment Required		Laser source, Optical fiber, Screen, Scale.					
5	Theory, Formula,	The Sine of the numerical apermeasured as to of the optical spot on a screen, we can umerical apermental apermental the Accepta When screen.	erture of the che angle spriber. There en and by keen and sure rture of the note angle, $\theta_0 = \frac{1}{12}$ The D - the display $\frac{1}{12}$	e fiber. The pread by the fore, by me nowing the extreme the accessiber. $= \tan^{-1} \left(\frac{D}{2L} \right)$ ameter of the pread of the second control of the pread of the	e acceptane light signal easuring the distance from ptance and the bright circle ween the op	ce angle cal at the emediameter om the fiber gle and the fical fiber e	an also be nerging end of the light rend to the ere by the on screen,	
6	Procedure	Switch on t	he laser sou	urce and ac	ljust the dis	stance betw	een output	

end of the optical fiber and the screen 'L' (say 5 cm).

- Place a graph sheet on the screen and observe the circle formed on the graph sheet.
- Mark the points 'a','b','c' & 'd' on the inner bright circle as shown in the diagram. Note down the horizontal diameter D_1 and vertical diameter D_2 of the inner bright circle in the tabular column.
- Repeat the above steps for different values of L (for 4cm, 3cm, ...).
- Find the Acceptance angle from the tabular column and hence the Numerical aperture.

7 Experimental Setup. Expected Graph

8 Observation Table, Look-up Table, Output


Tra il No.	L (in cm)	Horizo ntal diamet er D ₁ (in cm)	Vertic al diame ter D ₂ (in cm)	Mean Diame ter D (in cm)	Accep tance angle	Numeri cal apertur e NA
1						
2						
3						
4						

9 Sample Calculations

$$\theta_0 = \tan^{-1} \left(\frac{D}{2L} \right)$$

$$NA = \sin \theta_0$$

10 Graphs

Diameter of the spot (mm)

18PHY16 rights reserved.

11	Results & Analysis	The Angle of acceptance and Numerical aperture of the given optical fiber are found to be
		$\theta_0 = \dots$
		NA =
12	Application Areas	Used in Remote Control, CD players, Television, switching circuits etc.
13	Remarks	
	Faculty Signature with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Expt	Course Content or Syllabus	Conten	Blooms'	Final	Identifie	Instructio	Assessment
- #	(Split module content into 2 parts which	t	Learnin	Bloo	d Action	n Methods	Methods to
	have similar concepts)	Teachin	g	ms'	Verbs	for	Measure
		g Hours	Levels	Leve	for	Learning	Learning
			for		Learning		
			Content				
A	В	С	D	Ε	F	G	Н
1	Radius of curvature of plano convex	3	- L2	L3	Apply	Experime	Slip Test
	lens using Newton's rings.		- L3			nt	
2	Calculation of Dielectric constant by RC	3	- L2	L3	Apply	Experime	Slip Test
	charging and Discharging		- L3			nt	
3	Determine Wavelength of	3	- L2	L3	Use		-Slip Test
	semiconductor laser using Laser		- L3			Experime	
	diffraction by calculating grating					nt	
	constant.						
	Study Series and parallel LCR resonance		- L2	L3	Apply	Experime	-Slip Test
	and hence Calculate inductance, band		- L3			nt	
	width and quality factor using series						
	LCR Resonance						
5	Estimation of Fermi Energy of Copper	3	- L2	L3	Apply		Slip Test
			- L3			Experime	
						nt	
6	Rigidity Modulus by Torsional pendulum.	3	- L2	L3	Use	Experime	Slip Test
			- L3			nt	
7	Study of input and output Transistor		- L2	L3	Apply		Slip Test
	characteristics and hence calculate		- L3			Experime	
	input resistance, alpha and beta					nt	

LABORATORY PLAN - CAY 2019-20

8	Draw photo diode characteristics and calculate power response	3	- L2 - L3	L3	Use	Experime nt	Slip Test
9	Young's modulus of a beam by Single Cantilever experiment.	3	- L2 - L3	L3	Use	Experime nt	Slip Test
10	Determination of spring constants in Series and Parallel combination	3	- L2 - L3	L3	Apply	Experime nt	Slip Test
11	Determination of Magnetic field intensity at the center of a circular coil carrying current (by deflection method).		- L2 - L3	L3	Apply	Experime nt	Slip Test
12	Determine Acceptance angle and Numerical aperture of an optical fiber	3	- L2 - L3	L3	Apply	Experime nt	Slip Test